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For the groundwater flow problem (which corresponds to the Darcy flow model),
we show how to produce a scheme with one unknown per element, starting from a
mixed formulation discretized with the Raviart Thomas triangular elements of lowest
order. The aim is here to obtain a new formulation with one unknown per element by
elimination of the velocity variablesq=−k gradP, without any restriction concern-
ing the computation of the velocity field. In the first part, we describe the triangular
mixed finite element method used for solving Darcy’s and mass balance equations. In
the second part, we study the elliptic–parabolic problem; we describe the new formu-
lation of the problem in order to use mixed finite elements (MFE) with less unknowns
without any specific numerical integration. Finally, we compare the computational
effort of the MFE method with the new formulation for different triangulations using
numerical experiments. In this work, we show that the new formulation can be seen
as a general formulation which can be equivalent to the finite volume or the finite
difference methods in some particular cases.c© 1999 Academic Press
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1. INTRODUCTION

The usual equations describing the flow in a porous medium are given by the mass balance
equation and Darcy’s law,

s
∂P

∂t
+∇ · (q) = f, (1)

q = −k∇P, (2)
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wheres (L−1) is the specific storativity of the porous material,k (LT−1) is the so-called
hydraulic conductivity,f (T−1) is the source or sink term per unit area,P (L) andq (LT−1)

are the piezometric head and the Darcy’s velocity, respectively.
This system is often modelled by finite difference or finite element methods of lower

order. The finite difference method ensures an exact mass balance over each element but
the finite element method is considered as more flexible because of its high capacity of
discretizing complex geometry domains. However, with the finite element method we have
discontinuous fluxes at the element’s edge.

The idea of mixed finite element is to approximate simultaneously the piezometric head
P and the velocityq. This approximation gives velocity throughout the field and the normal
component of the velocity is continuous across the inter-element boundaries. Moreover,
with the mixed formulation, the velocity is defined with the help of Raviart Thomas basis
functions [1, 2] and, therefore, a simple integration over the element gives the corresponding
streamlines. The drawback of an indefinite stiffness matrix is circumvented by hybridiza-
tion. The system is solved in this case for one unknown, the average piezometric head per
element edge.

Several studies have shown the superiority of the mixed finite element method with regard
to the other classical methods; Durlofsky [3] compared mixed and controlled volume finite
element approximations for different contrasts of hydraulic conductivity. He showed that
for very variable or discontinuous hydraulic conductivity fields the mixed finite element
method approximates flow variables more accurately and more realistically than the control
volume method with the same number of unknowns. Some comparisons between the mixed
finite element method and other classical methods can be found in the works of [4–7].
For a triangular mesh, the mixed method requires about 3 times the number of unknowns,
compared to finite differences and about 1.5 times, compared to finite volumes.

Because mixed finite element (MFE), finite volume (FV), and finite difference (FD)
methods use an harmonic mean of the hydraulic conductivity to calculate the flux between
two adjacent cells, one could show, in some conditions, a certain correspondence between
the three methods. It has been reported that for rectangular meshes, mixed finite elements
of lowest order reduce to the standard cell-centred finite volume method [8, 9], provided
numerical integration is used. Recently, Cordes and Kinzelbach [10] showed equivalence
between mixed finite element and (1) block-centred finite differences, when the triangulation
is obtained by subdivision of rectangular elements, and (2) finite volumes, when general
triangulation is used and without any numerical integration. This last connection was already
noticed by Barangeret al. in 1994 [11].

Ackereret al. [12] stated that such equivalence is restricted to divergence-free velocity
(steady state flow field, no sink/source terms inside the domain). Moreover, the mixed
finite element method does not require a Delaunay triangulation [9], unlike a finite volume
scheme. Notice that imposing boundary conditions with finite volume or finite difference
methods often poses nontrivial problems.

MFE is more accurate but uses more unknowns (number of edges) than the other methods
(number of cells for FD or FV). Hence, the objective of this work is to reduce the number
of unknowns for the MFE method using a new formulation in order to lead to a final system
with the number of cells as unknowns without any approximation. In this paper one is
interested in a general triangular grid.

In the first part, we describe briefly the triangular MFE method used for solving Darcy’s
and mass balance equations.
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In the second part, we present the new formulation of the problem in order to use MFE
with less unknowns. We show how we built the final system to solve. The new formulation
is equivalent to the usual MFE method. However, the final system obtained with the new
formulation leads to a symmetric matrix for the steady-state case and an unsymmetric matrix
for the transient flow.

In the third part, we show connections between this formulation, the MFE, FD, and FV
methods. The new formulation can indeed be seen as a general formulation equivalent to
the FV or the FD methods in some particular cases. This shows also that we can design
a FV method for a general triangulation (not necessarily Delaunay triangulation), being
aware that the state variable for the FV method does not represent the average potential
head inside the element.

The end of the paper is devoted to some numerical experiments. We show the efficiency
of the new algorithm in some specific cases and we point out the correlation between the
triangulation type and the definite positivity of the functional matrix of the new method.

2. THE TRIANGULAR MIXED FINITE ELEMENT METHOD

In the lowest-order MFE formulation for triangular elements, the velocity vector is ap-
proximated with vector basis functions that are piecewise linear along both coordinate
directions. VelocityqE, in any point inside elementE can be obtained by (e.g., [13])

qE = w1Q1+ w2Q2+ w3Q3, (3)

whereQi (L2T−1) are the fluxes across the element edgesEi andwi (L−1) are the three
vector basis functions for the elementE (Fig. 1) defined by∫

Ej

wi · nEj =
{

1, if i = j
0, if i 6= j.

(4)

For a triangular element these three vector basis functions are

w1 = 1

2|E|
(

x − x1

y− y1

)
, w2 = 1

2|E|
(

x − x2

y− y2

)
, w3 = 1

2|E|
(

x − x3

y− y3

)
, (5)

where(xi , yi ) are the coordinates of the vertices ofE and|E| is its area.

FIG. 1. Basis functions for the triangular MFE method.



A NEW MIXED FINITE ELEMENT METHOD 151

In addition they satisfy

∇ · wi = 1

|E| . (6)

On the edgeEj

wi · nEj =
{

1
|Ei | , if i = j

0, if i 6= j,
(7)

where|Ei | is the length of the edgeEi .
The mass balance equation (1) is discretized using a finite volume formulation in space,∫

E

s
∂P

∂t
+
∫
E

∇ · qE =
∫
E

f = Qs, (8)

and a finite difference scheme in time,

s
Pn − Pn−1

1t
+ (Q1+ Q2+ Q3)

|E| = Qs

|E| , (9)

whereQs (L2T−1) is the source or sink term associated with the elementE andn is the
index of the time step. The fluxesQi , i = 1 · · ·3 are expressed at timen for an implicit
scheme and atn− 1 for an explicit scheme.

We recall that Darcy’s law is given byqE =−k∇P, k being the hydraulic conductivity
in the elementE. Using properties (6) and (7) of the vector basis functionswi , Darcy’s law
written in a variational form leads to∫
E

(
k−1qE

) ·wi = −
∫
E

(∇P) ·wi =
∫
E

P∇ ·wi −
3∑

j=1

∫
Ej

Pwi · nEj =
1

|E|
∫
E

P− 1

|Ei |
∫
Ei

P

which gives

3∑
j=1

QEj

∫
E

(
k−1w j

) · wi = PE − T PEi . (10)

PE is the average potential head overE andT PEi are the average potential heads on each
element edgeEi and will be denoted respectivelyP andT Pi for simplicity.

Darcy’s law can then be written in the matrix form B11 B12 B13

B21 B22 B23

B31 B32 B33


Q1

Q2

Q3

 =
 P − T P1

P − T P2

P − T P3

 , (11)

where

Bij = 1

k

∫
E

wi · w j .
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As shown in [10], if we definer ij as the edge vector from nodei toward nodej , Lij as its
length(Lij =‖r ij‖) and by applying the scalar product,r ij r ik = 1

2(L
2
ij + L2

ik− L2
jk), we find

B = 1

48k|E|


3L2

12+ 3L2
13− L2

23 −3L2
12+ L2

13+ L2
23 L2

12− 3L2
13+ L2

23

−3L2
12+ L2

13+ L2
23 3L2

12− L2
13+ 3L2

23 L2
12+ L2

13− 3L2
23

L2
12− 3L2

13+ L2
23 L2

12+ L2
13− 3L2

23 −L2
12+ 3L2

13+ 3L2
23

 . (12)

One notices that

B11+ B21+ B31 = B12+ B22+ B32 = B13+ B23+ B33 = L

with

L = (L2
12+ L2

13+ L2
32

)/
48k|E|.

The system of equations (11) gives

L(Q1+ Q2+ Q3) = 3P − (T P1+ T P2+ T P3). (13)

Defining S= |E|L(s/1t) and F = L Qs the substitution of Eq. (13) in the mass balance
equation (9), expressed in an implicit scheme, gives

Pn = 1

S+ 3

(
T P1+ T P2+ T P3+ F + SPn−1

)
. (14)

Equation (10) can also be solved for the corresponding fluxes across the element edges

Q1 = − k

|E|
[

L−1
1 · P +

(
r23r23− L−1

1

3

)
T P1+

(
r23r31− L−1

1

3

)
T P2

+
(

r23r12− L−1
1

3

)
T P3

]
, (15)

whereL−1
1 = −|E|L−1/k.

Defining

ς = L−1
1

3
− L−1

1

S+ 3
, (16)

b = L−1
1

S+ 3
(F + SPn−1). (17)

The substitution ofP in (15) by its expression in (14) leads to

Q1 = a11T P1+ a12T P2+ a13T P3− kb

|E|
Q2 = a21T P1+ a22T P2+ a23T P3− kb

|E| (18a)

Q3 = a31T P1+ a32T P2+ a33T P3− kb

|E| ,
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where

a11=− k

|E| (r23r23− ς), a12= a21=− k

|E| (r23r31− ς), a13= a31=− k

|E| (r23r12− ς)

(18b)

a22=− k

|E| (r31r31− ς), a23= a32=− k

|E| (r12r31− ς), a33=− k

|E| (r12r12− ς).

3. THE NEW FORMULATION FOR THE ELLIPTIC–PARABOLIC PROBLEM

The goal is now to eliminate state variables on the edges with the help of a new vari-
able associated with an element for a general case (steady state or transient flow with or
without sink/source terms). This new variableH is defined so that the three fluxes have the
expressions

Q1 = ξ1(H − β1T P1)+ γ1,

Q2 = ξ2(H − β2T P2)+ γ2, (19)

Q3 = ξ3(H − β3T P3)+ γ3,

and

H = π1T P1+ π2T P2+ π3T P3. (20)

H does not represent necessarily the average potential head on the element. Replacing (20)
in (19) and comparing with the MFE scheme (18), the coefficientsγ1, γ2, γ3, π1, π2, π3,
ξ1, ξ2, ξ3, β1, β2, andβ3 are defined by the 12 equations

γ1 = γ2 = γ3 = − k

|E|b, (21)

ξ1(π1− β1) = − k

|E| (r23r23− ς), (22)

ξ1 · π2 = − k

|E| (r23r31− ς), (23)

ξ1 · π3 = − k

|E| (r23r12− ς), (24)

ξ2 · π1 = − k

|E| (r31r23− ς), (25)

ξ2(π2− β2) = − k

|E| (r31r31− ς), (26)

ξ2 · π3 = − k

|E| (r31r12− ς), (27)

ξ3 · π1 = − k

|E| (r12r23− ς), (28)

ξ3 · π2 = − k

|E| (r12r31− ς), (29)

ξ3(π3− β3) = − k

|E| (r12r12− ς). (30)
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The nine coefficients(π1, π2, π3, ξ1, ξ2, ξ3, β1, β2, andβ3) are obtained by solving the
system constituted by Eqs. (22) to (30), which are not linearly independent. Indeed, we
have

(23)

(24)
⇔ π2

π3
= r23r31− ς

r23r12− ς
(31)

(25)

(27)
⇔ π1

π3
= r31r23− ς

r31r12− ς
(32)

(28)

(29)
⇔ π1

π2
= r12r23− ς

r12r31− ς
. (33)

We see immediately that(31)× (33)= (32).
Therefore, we assume one of the unknowns, for exampleβ1, is a given parameter denoted

τ hereafter. This parameter is defined at the element level and can be different for each
element. The previous relations give

from (22)
(23) and (33)

π2 = (r23r31− ς)(r12r31− ς)
(r23r31− ς)(r12r23− ς)− (r23r23− ς)(r12r31− ς)

τ (34)

from (33) and (34)

π1 = (r12r23− ς)
(r12r31− ς)

π2 (35)

from (32) and (34)

π3 = (r23r12− ς)
(r23r31− ς)

π2 (36)

from (26)
(27)

β2 = (r31r23− ς)π2− (r31r31− ς)π1

(r31r23− ς)
(37)

from (30)
(29)

β3 = (r12r31− ς)π3− (r12r12− ς)π2

(r12r31− ς)
(38)

from (24)

ξ1 = − k

|E|
(r23r12− ς)

π3
(39)

from (25)

ξ2 = − k

|E|
(r31r23− ς)

π1
(40)

and from (29)

ξ3 = − k

|E|
(r12r31− ς)

π2
. (41)
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In the case of an elliptic problem (steady state flow with sink/source terms), Eq. (16) leads
to ς = 0. The relations (34, . . . ,41) become

π1 = (r13r23)(r12r32)

4|E|2 τ (42)

π2 = (r12r13)(r13r23)

4|E|2 τ (43)

π3 = (r12r13)(r12r32)

4|E|2 τ (44)

β2 = τ (45)

β3 = τ (46)

ξ1 = 4k|E|
r12r13

1

τ
(47)

ξ2 = 4k|E|
r23r21

1

τ
(48)

ξ3 = 4k|E|
r31r32

1

τ
. (49)

Substituting these relations in Eq. (20) leads to

H = τ

4|E|2 (T P1(r13r23)(r12r32)+ T P2(r12r13)(r13r23)+ T P3(r12r13)(r12r32)). (50)

This relation shows thatH is the linear interpolate of the three (edge) potential heads at
the circumcentre of the cell, whatever its location (inside or outside the triangle). In the
case of steady state flow if we takeτ constant and equal to 1, these results are in agreement
with those obtained by Cordes and Kinzelbach [10], where sink/source terms are zero. In
this restrictive case, where the physical head also varies linearly in the element,H can be
interpreted as the head at the circumcentre of the cell.

3.1. The MFE Method with One Unknown per Element

In this part we present the construction of the final system to solve with one unknown
(H ) per cell. We show that unlike the usual MFE method, the new formulation does not
lead to a symmetric matrix in all cases.

Let us consider an elementA with its three adjacent elements (Fig. 2), The mass balance
equation for this element can be written as (substituting (14) in (13))

L

(
1+ S

3

)
(Q1+ Q2+ Q3)+ S

3
(T P1+ T P2+ T P3) = F + SPn−1. (51)

With the new formulation, the fluxes are given by

Qi = ξi (H − βi T Pi )+ γi .
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FIG. 2. Notation of edges and adjacent elements for the new formulation of the MFE method.

Substituting this last relation in Eq. (51) leads to

(
1+ S

3

)( 3∑
i=1

ξi

)
H +

3∑
i=1

{
S

3L
−
(

1+ S

3

)
ξiβi

}
T Pi +

(
1+ S

3

) 3∑
i=1

γi = F

L
+ S

L
Pn−1.

(52)

If we noteλ = (1+ S
3 )
∑3

i=1 ξi andλi = {S/3L − (1+ S/3)ξiβi }, Eq. (52) becomes

λH +
3∑

i=1

λi T Pi = F

L
+ S

L
Pn−1+ (3+ S)

kb

|E| = 0. (53)

Introducing the reference to elementA in the notations by an index leads to

λAH A + λA
1 T PA

1 + λA
2 T PA

2 + λA
3 T PA

3 = 0. (54)

For this element if we definebA
i = ξ A

i β
A
i andχ A = − kA

|A|b
A, the fluxes across the element

edges are

QA
i = ξ A

i HA − bA
i T PA

i + χ A. (55)

In order to construct the final system to solve, we use the two properties of continuity
between two adjacent elementsA andB (Fig. 2):

The continuity of fluxes between two adjacent elementsA andB is

QA
1 + QB

i = 0; (56)

using (55) it leads to

ξ A
1 H A − bA

1 T PA
1 + χ A + ξ B

i H B − bB
i T PB

i + χ B = 0. (57)

The continuity of piezometric head between two adjacent elementsA andB,

T PA
1 = T PB

i (58)
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which gives

T PA
1 = T PB

i =
ξ A

1 H A + ξ B
i H B + χ A + χ B

bA
1 + bB

i

. (59)

If we denote:bAB = bA
1 + bB

i , bAC = bA
2 + bC

j , andbAD = bA
3 + bD

k , substitution of
Eq. (59) in (54) leads to the final system to solve

H A

(
λA + λ

A
1 ξ

A
1

bAB
+ λ

A
2 ξ

A
2

bAC
+ λ

A
3 ξ

A
3

bAD

)
+
(
λA

1 ξ
B
i

bAB

)
H B +

(
λA

2 ξ
C
j

bAC

)
HC +

(
λA

3 ξ
D
k

bAD

)
H D

= −λA
1

(
χ A + χ B

bAB

)
− λA

2

(
χ A + χC

bAC

)
− λA

3

(
χ A + χ D

bAD

)
. (60)

The solutionH of Eq. (60) is proportional toτ . But the state variable on the edge (defined
by Eq. (59)) is independent ofτ (ξ E

i (resp.βE
i ), being proportional to 1/τ (resp.τ )).

The matrix associated to the system of Eqs. (60) is symmetric if

λA
1 ξ

B
i

bAB
= λB

i ξ
A
1

bB A
or

(
SA

3L A −
(
1+ SA

3

)
βA

1 ξ
A
1

)
ξ B

i

bA
1 + bB

i

=
(

SB

3L B −
(
1+ SB

3

)
βB

i ξ
B
i

)
ξ A

1

bA
1 + bB

i

. (61)

Therefore, for an elliptic problem(S= 0, β = τ), the new formulation (60) leads to the
resolution of a symmetric system if the parameterτ is constant over the domain. For
the transient flow, the new formulation leads to an unsymmetric system for any kind of
triangulation.

Like with standard MFE, the average head in the element is obtained by a local equation
using Eqs. (59) and (14)

Pn = 1

S+ 3

(
ξ A

1 H A + ξ B
i H B + χ A + χ B

bAB
+ ξ

A
2 H A + ξC

j HC + χ A + χC

bAC

+ ξ
A
3 H A + ξ D

k H D + χ A + χ D

bAD
+ F + SPn−1

)
. (62)

When we substitute Eq. (59) in (55), we obtain a relation which gives the flux between
two adjacent elementsA andB, functions ofHA andHB for the general case (steady state,
transient flow with or without sink source term)

QA
1 = ξ A

1 H A − bA
1

(
ξ A

1 H A + ξ B
i H B + χ A + χ B

bA
1 + bB

i

)
+ χ A. (63)

3.2. Imposing Boundary Conditions on Edges

With the system (60) we have just one unknownH per element. In the case of steady
state flow without sink/source terms, we have seen thatH can be understood as the head at
the circumcentre of the element. In order to impose boundary conditions, modelers usually
add a layer of very thin cells. Indeed at the head boundary, elements with a right angle can
be added to apply a head value directly at the center of each boundary edge [10].

But in the case of steady state flow with sink/source terms or transient flow, the piezometric
head does not vary linearly anymore in the element and, therefore,H does not represent
the head at the circumcentre of the cell.
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We construct the approximation of the boundary condition with the help of the mixed
formulation. Indeed, we derive equations with Dirichlet or Neumann boundary conditions
on the edges.

If we assume a Dirichlet boundary condition on edge 2, for example, of elementA,
Eq. (60) must be replaced by

H A

(
λA + λ

A
1 ξ

A
1

bAB
+ λ

A
3 ξ

A
3

bAD

)
+
(
λA

1 ξ
B
i

bAB

)
H B +

(
λA

3 ξ
D
k

bAD

)
H D

= −λA
1

(
χ A + χ B

bAB

)
− λA

2 T P2− λA
3

(
χ A + χ D

bAD

)
. (64)

If we assume now that we have a Neumann boundary condition on edge 2 of elementA,
then Eq. (60) must be replaced by

H A

(
λA + λ

A
1 ξ

A
1

bAB
+ λ

A
2 ξ

A
2

bA
2

+ λ
A
3 ξ

A
3

bAD

)
+
(
λA

1 ξ
B
i

bAB

)
H B +

(
λA

3 ξ
D
k

bAD

)
H D

= −λA
1

(
χ A + χ B

bAB

)
− λA

2

(
χ A + Q2

bA
2

)
− λA

3

(
χ A + χ D

bAD

)
. (65)

4. THE NEW FORMULATION VERSUS FV AND FD METHODS

In the following we present some comments about the MFE approximation.
In the case of a steady state flow field with no sink/source terms, the velocity vector

is constant; hence the potential head varies linearly inside each element andH may be
interpreted as the potential head located at the circumcentre of the element. We notice a
complete analogy between the MFE and FV methods which gives us a new perception of
the FV method. The new variableH is not the average potential head on the element but it
allows us to calculate the average potential heads on edges, fluxes on edges, and the average
potential head on the element. Therefore, one can impose boundary conditions on the edges
and the circumcentre may be even located outside the element. A misinterpretation of the
significance ofH can be at the origin of wrong statements. If a rhombus is divided into two
triangles by its longer diagonal, the circumcentres lie outside of their respective elements
(Fig. 3). By settingτ = 1 and simplifying Eq. (60), the flux across the common edge of two
arbitrarily shaped elements can be expressed by

QAB = L23
HA − HB
L A
kA
+ L B

kB

, (66)

whereL23 is the length of the common edge 23,

L A = L23
r12r13

4|EA| and L B = L23
r42r43

4|EB| ,

|EA| (resp.|EB|) is the area of the elementA (resp.B), r ij is the vectorij , andkA (resp.kB)
is the hydraulic conductivity of the elementA (resp.B)). In the present case,L A andL B in
Eq. (66) become negative.

If we consider a flow from cellA to cellB, the fluxQAB from the elementA to the element
B is positive and the average head onA is greater than the average head onB. One could
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FIG. 3. Calculation of the flux in the case of a rhombus divided into triangles.

interpret this byHA> HB and Eq. (66) gives in that case a negative fluxQAB, i.e. a flow from
B towardA. Furthermore, one could explain this with local minima and maxima in the head
field and nonphysical orientation of fluxes and velocities. In fact there is no nonphysical
orientation of fluxes becauseHA and HB are located outside their corresponding cells
(at the circumcentres) and are not the average potential head inside their corresponding
elements (Fig. 3). From a mathematical point of view, the triangular FV method does not
require Delaunay triangulation. The average potential head over each element has to be
calculated from values at the circumcentres using Eq. (62). When triangulation is obtained
by subdivision of rectangles, the MFE method is equal to the FD method becauseH
corresponds to the potential head at the circumcentre of each element of the rectangle
which corresponds to the potential head in the center of the rectangle.

In the case of steady state flow field with sink/source terms, the velocity vector is not
constant any longer. Unlike the FV method, the contribution of sink/source terms of the
neighboring elements in the expression of fluxes is taken into account with the new formu-
lation (χ A andχ B in Eq. (60)). In the case of transient flow,H is just the unknown cell and
it cannot be interpreted as the average potential head in the element or the potential head at
the circumcentre of the element.

We focus now on the equivalence between the new formulation and block-centered finite
differences when the triangulation is obtained by subdivision of rectangular elements. In
the case of steady state flow (ς= 0), with or without sink source terms, we cannot define
all relations(42) · · · (49), because we haver ij r ik equal to zero. If the triangle of Fig. 1 has
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FIG. 4. Rectangular mesh subdivided into triangles.

a right angle at node 3(r31r32= 0) and Eq. (18) leads to

Q1 = − k

|E| [r23r23T P1+ r23r12T P3+ b] = − k

|E| [r23r23(T P1− T P3)+ b]

(67)

Q2 = − k

|E| [r31r31T P2+ r12r31T P3+ b] = k

|E| [r31r31(T P2− T P3)+ b].

When the triangulation is obtained by subdivision of rectangular elements (Fig. 4) with a
constant hydraulic conductivityk in each rectangle and a accumulation termQs0 in each
rectangle equally distributed (Qs0/2 for each triangle), the previous relations (67) become

Q1 = −2k0
L y

Lx
[T P1− T P0] + Qs0

6
(68)

Q2 = −2k0
Lx

L y
[T P2− T P0] + Qs0

6
.

It is obvious that for this case the new variableH is equal toT P0. By using the same
approach as in Section 3.1, we can formulate the problem in order to find a final system of
unknowns for the average head on the diagonals. This system is obviously the size of the
number of rectangles.

In the case of steady state flow without sink source terms, this formulation is equal to
the block-centred finite difference discretization. However, in the case of steady state flow
with sink source terms, [14] stated that the two formulations were similar. We show that the
mixed and block-centred finite difference discretizations are different.
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The mass balance equation using the block-centered finite difference discretization leads
to

−2
L y

Lx

1(
1
k0
+ 1

k5

) [T P5− T P0] − 2
Lx

L y

1(
1
k0
+ 1

k6

) [T P6− T P0]

− 2
L y

Lx

1(
1
k0
+ 1

k7

) [T P7− T P0] − 2
Lx

L y

1(
1
k0
+ 1

k8

) [T P8− T P0] = Qs0. (69)

Using continuity of fluxes and the piezometric head between two adjacent elements, the
MFE method leads to

−2
L y

Lx

1(
1
k0
+ 1

k5

) [T P5− T P0] − 2
Lx

L y

1(
1
k0
+ 1

k6

) [T P6− T P0]

− 2
L y

Lx

1(
1
k0
+ 1

k7

) [T P7− T P0] − 2
Lx

L y

1(
1
k0
+ 1

k8

) [T P8− T P0]

= Qs0+ Qs0k5− k0Qs5

6(k5+ k0)
+ Qs0k6− k0Qs6

6(k6+ k0)
+ Qs0k7− k0Qs7

6(k7+ k0)
+ Qs0k8− k0Qs8

6(k8+ k0)
. (70)

This equation is different from the earlier one (69) obtained with the block-centred finite
difference method. With the MFE method the right-hand term of this equation represents
the contribution of the sink/source term, not only from the element but also from all adja-
cent elements weighted with hydraulic conductivity. For transient flow or steady state flow
with sink/source terms, the head variation inside the element is no longer linear. Therefore,
an additional term appears in the calculation of the fluxes (Eq. (18)) which leads to the
additional sink/source terms in Eq. (70). Of course, one could use (69), instead of (70), for
steady state flow with sink/source terms or transient flow. However, there is no equivalence
between (69) and standard MFE method.

In the case of transient flow, there is no correspondence between FD and MFE methods
sinceH is defined by triangular element.

5. NUMERICAL EXPERIMENTS

We have seen previously that we can formulate the MFE method in order to solve the
problem for only one unknownH per element for both steady state and transient flow. The
final system is given by Eq. (60) written for each element. For a general triangulation, this
system leads to a symmetric matrix for steady-state flow with or without sink source terms.
For transient flow, the system (60) leads to an unsymmetric matrix. However, no idea is
available about the computational effort required for the new formulation in comparison
with the usual MFE method. With the new formulation, the number of unknowns is reduced
(the number of elements, instead of the number of edges), but the computational effort
depends, not only on the number of unknowns, but also on the sparseness and on the
positive definiteness of the matrix which can be affected by the kind of triangulation used.

The last part of this paper is aimed at a comparison of the computational effort with the
new formulation and the MFE method for different triangulations. Chaventet al.[16] show
that, in the case an elliptic problem, the matrix obtained with the new formulation is positive
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definite, if and only if, for each elementA with its three adjacent elements (Fig. 2) we have

2
cotgθA→B

kA
+ cotgθB→A

kB

+ 2
cotgθA→C

kA
+ cotgθC→A

kC

+ 2
cotgθA→D

kA
+ cotgθD→A

kD

> 0, (71)

whereθA→B is the angle of the elementA face to the elementB (Fig. 2).
If we assume a Dirichlet boundary condition on edge 2 of elementA, then Eq. (71) must

be replaced by

2
cotgθA→B

kA
+ cotgθB→A

kB

+ 2
cotgθA→C

kA
+ cotgθC→A

kC

+ 2
cotgθA→D

kA

> 0, (72)

whereθA→bc is the angle face to the Dirichlet edge.
These two criteria depend not only on the spatial discretisation but also on the distribution

of the conductivity in the domain. In the case of homogenous porous media, if we verify
the Delaunay criteria, we verify necessarily the criteria (71) and (72). These results cannot
be extended to the parabolic problem.

Five-domain discretizations will be studied. The first mesh (Fig. 5a) is composed of only
equilateral triangles; in the second one (Fig. 5b) we have equilateral elements with some
deformed triangles. In the third mesh (Fig. 5c) all triangles present angles very close toπ/2.
The fourth mesh (Fig. 5d) presents some triangles with angles greater thanπ/2. The last
mesh (Fig. 5e) is similar to the third mesh (Fig. 5c) but all triangles present angles greater
thanπ/2. For the meshes (a), (b), and (c), all angles are strictly less thanπ/2; criteria (71) and
(72) are verified and the system obtained with theH solution is therefore positive definite.

The five heterogeneous domains are presented with their corresponding meshes in Fig. 5.
The boundary conditions for these domains are similar; a constant head (100 m) is imposed
at the top and the bottom and a sink term (with a rate of−100 m3/d) is localized in the
center of the domain. Their thickness is 1 m.

Both steady-state and transient flow (with a storativity coefficients = 0.2 m−1) will be
studied. The CPU time will be assessed at various levels of refinement for the different do-
mains. To refine a mesh, each element is divided into four elements by joining the three edge
midpoints. In this way, the resulting meshes have the same properties as the previous one.

To solve the symmetric steady state flow equations, we use thepreconditioned conjugate
gradientmethod. For the unsymmetric transient flow equations, we use thepreconditioned
biconjugate gradient stabilisedmethod [15].

For steady state flow with sink/source terms, Table I gives the CPU time (on a Digi-
tal PW 600 workstation), condition number, and the number of iterations to reach solver
convergence versus the number of unknowns corresponding to each mesh. Since the MFE
method uses 1.5 times more unknowns than the new formulation, this last one requires 45
to 50% less CPU time than the classical MFE formulation. For the third mesh composed
of triangles having angles very close toπ/2, the calculations are still in favor of the new
formulation since the mesh verifies (71) and (72).

For mesh (d), we have a triangular element with a Dirichlet edge with an angle greater
thanπ/2 (Fig. 6) which does not verify the criterion (72). In this case the matrix obtained
with the H solution is not positive definite. It is well known that in this case the solution
of the system is difficult and time consuming even with specific solvers. The same kind of
results are obtained for the mesh in Fig. 5e.

Table II gives the CPU time and the number of iterations for the solver to reach conver-
gence for the unsteady state flow. In this case, the following conclusions can be drawn.
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FIG. 5. Mesh and distribution of conductivity for each domain.



TABLE I

Steady State Flow with Sink/Source Terms: CPU Time, Condition Number and Iterations

Number versus the Number of Unknowns for Each Mesh

MFE H resolution

Mesh Unkn CPU Nb iter Condition Unkn CPU Nb iter Condition Matrix

(a) 156 0.014 104 17042 96 0.006 54 9185 Pos. def
600 0.045 176 53540 384 0.02 140 41518 Pos. def

2362 0.38 364 171182 1536 0.19 318 156634 Pos. def
9312 4.65 713 — 6144 2.41 685 — Pos. def

(b) 106 0.011 62 2005 64 0.006 32 2777 Pos. def
404 0.018 97 9197 256 0.014 80 17603 Pos. def

1576 0.146 223 33229 1024 0.08 190 62338 Pos. def
6224 2.11 487 — 4096 1.05 396 — Pos. def

(c) 208 0.014 94 10840 128 0.009 58 19405 Pos. def
800 0.052 175 35201 512 0.035 166 62263 Pos. def

3136 0.56 389 118706 2048 0.32 376 211983 Pos. def
12416 6.73 787 — 8192 3.37 775 — Pos. def

(d) 200 0.016 56 1097 125 0.014 56 3667 Indefinite
775 0.08 256 108322 500 0.1 535 1659733 Indefinite

3050 0.73 516 3788620 2000 3.13 3997 5463773 Indefinite
12100 10.5 1250 — 8000 197.52 47208 — Indefinite

(e) 208 0.015 134 11415 128 0.02 355 18421 Indefinite
800 0.08 262 37143 512 0.96 5483 56067 Indefinite

3136 0.6 425 125212 2048 17.01 21284 187516 Indefinite
12416 7.36 871 — 8192 a 50000 — Indefinite

a Convergence not reached after 50000 iterations.

TABLE II

Transient Flow with Sink/Source Terms: CPU Time, and Iterations Number versus

the Number of Unknowns for Each Mesh

MFE H resolution

Mesh Unkn CPU Nb iter. Unkn CPU Nb iter Matrix

(a) 156 0.007 57 96 0.001 28 Pos. def
600 0.027 95 384 0.018 72 Pos. def

2362 0.2 192 1536 0.18 149 Pos. def
9312 2.54 389 6144 1.78 323 Pos. def

(b) 106 0.008 16 64 0.001 10 Indefinite
404 0.01 27 256 0.007 40 Indefinite

1576 0.046 56 1024 0.77 1139 Indefinite
6224 0.52 117 4096 2.31 655 Indefinite

(c) 208 0.01 32 128 0.007 82 Indefinite
800 0.025 54 512 0.53 1725 Indefinite

3136 0.16 108 2048 2.52 1594 Indefinite
12416 1.9 223 8192 a 50000 Indefinite

(d) 200 0.01 30 125 0.002 19 Indefinite
775 0.023 58 500 0.09 276 Indefinite

3050 0.2 138 2000 75 49434 Indefinite
12100 2.44 287 8000 a 50000 Indefinite

(e) 208 0.008 36 128 0.01 132 Indefinite
800 0.026 62 512 a 50000 Indefinite

3136 0.18 119 2048 a 50000 Indefinite
12416 2.14 250 8192 a 50000 Indefinite

a Convergence not reached after 50000 iterations.
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FIG. 6. Triangular element with an edge associated with a Dirichlet boundary and with an angle greater then
π/2.

For the mesh in Fig. 5a, although the matrix is not symmetric but positive definite,
the calculation is still in favor of the new formulation. For more general triangulation
(meshes in Figs. 5b–5e), the new formulation gives an unsymmetric and not a positive
definite matrix. CPU time is of course not favored for the algorithm presented here. An
alternative to the “inversion” of an unsymmetric and indefinite matrix is to solve the nor-
mal form of the system (i.e. (t A · A)H = t A · B) and, therefore, to obtain a symmetric,
positive definite form of the system. But the normal matrixt A · A is dense, in compari-
son with the matrix obtained by the usual MFE approximation. The convergence becomes
slow, since the condition number of the normal equations matrix is less favorable than
the condition number of the original matrix. For example, for the mesh (d) with 12,100
unknowns, the MFE approximation requires 2.44 s of CPU time and 287 iterations. With
the new formulation, we could not converge without the use of the normal form of the
system. This form of the new formulation requires 43.54 s of CPU time and 7792 iter-
ations which are huge numbers, in comparison with those referring to the original MFE
system.
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6. CONCLUSION

The aim of this work was to obtain a new formulation of the MFE approximation in order
to decrease the number of unknowns and to understand connections between the MFE, FV,
and FD methods. We have shown how to build such a form of the mixed approximation
and this without any simplification for the general problem (steady or transient flow, with
or without sink/source terms). The number of unknowns with the new algorithm is now the
number of elements, instead of the number of edges. A new variable is defined by a linear
combination of the average head on element edges and a parameter denotedτ . The choice
of this parameter has no impact on the calculation of the average head on element edges,
on the average head inside the element, nor on the fluxes across element edges. The new
formulation can indeed be seen as a general formulation equivalent to the FV or the FD
methods in some particular cases.

This shows that, from a mathematical point of view, the FV method can be applied for
whatever triangulation (circumcentre not necessarily inside the element). However, the final
system can lead to a nonpositive definite matrix.

In the case of steady state flow with no sinks or sources, the new formulation is equivalent
to the FV method which was already mentioned by some other authors.

In the case of steady state flow with sink/source terms or transient flow, there is no
longer equivalence between MFE and FV or FD methods. The new formulation for an
elliptic partial differential equation leads to the resolution of a symmetric matrix. This
matrix is always positive definite if the inner angle of each element is less thanπ/2. For an
arbitrary triangulation, the matrix can still be positive definite, depending on the hydraulic
conductivity. For a positive definite matrix, the new formulation is very attractive in terms
of CPU costs.

For transient flow, the new formulation leads to the resolution of an indefinite unsym-
metric system for a general triangulation. In that case, the standard MFE approximation is
preferable, because it leads to a symmetric positive definite matrix.

The extension of the new formulation to 3D elliptic problems is an ongoing work. It is
an interesting challenge due to strong reduction of the number of unknowns.
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